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group 
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Abstract. We compute the eta function for ChemSimons quantum field theory with.co.mplex. 
gauge group. The calculation is performed using the Schwinger expansiw technique. We 
discuss, in particular, the role of thc metric on the field configuration space, and demonstrate 
that for a certain class of acceptable metrics the one-loop phase contribution to the effettive 
action can be calculated explicitly. The result is found to be propaitional to a,gauge'invariant 
part of the action. 

1. Introduction 

The effective action in certain three-dimensional topological field theories has ben~studied 
in [I-71. Particular attention has been paid to the Chern-Simons theory [SI, and its BF-. 
type counterparts [9-11], when the gauge group is a compact non-Abelian group. The 
relevance of these calculations lies in the fact that as one is dealing with a topological 
field theory, the nature of all quantum corrections must be identified explicitly. While one 
may naively have a metric independent (topological) action at the crassical level, oDe must 
ensure the preservation of these special properties by demonstrating that possible qu~atum 
corrections to the effective action maintain the topological nature of the mcrdel. Therefore, 
it is important to examine in full generality the nature of quantum corrections and, to this 
end, the off-shell effective action was studied in the above references. 

The general formalism adopted there was the Vikovisky-DeWitt .[12,13] off-shell 
effective action formalism, which provides the necessary geometrical framework in which to 
study the relevant quantum corrections. As shown in [31. the application of this form&ism to 
the first-order theories revealed some interesting subtleties associated with the path, inCe5d 
measure. ~n paaicu~ar, we mention the fact that the factor ,in the functional integral 
measure plays a crucial role in ensuring a successful application of the VD formalism, where 
Gjj denotes the metric on the field configuration space, While this factor'can normally be 
overlooked in second-order theories, when the field met& is field independent, this is not. 
the case in first-order models. In the latter, this metric factor alters in an essential way the 
phase contribution (the eta function) to the one-loop effectjve action. 

In [14], the quantization of Chern-Simons theory for the case of a complex gauge 
group was studied. An appealing feature of this model is that it desqibes 2 f 1 quantum 
gravity, when the gauge p u p  is chosen to be SL(2, C). Indeed, both *e brentzian 
and Euclidean signatures cases are dealt with in this scenario. As discussed above, it is 
therefore of general interest to examine the nature of the quantum corrections to?his model, 
in particular we would like to extract the general off-shell behaviour. To this end, we 
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concentrate our analysis here on the evaluation of the effective action to one-loop order. 
At first sight, this model bears a formal resemblance to a coupled system containing an 
interaction between a Chern-Shons aid a BF model. However, on closer inspection, one 
notices that certain relative signs in the interaction terms differ from those in the coupled 
model just mentioned. In the construction of the effective action, one then finds that the 
metric on the field configuration space enjoys a different stxcture. Since the construction 
of an acceptable metric on the field configuration space is at the heart of the geometric 
approach of Vilkovisky-DeWitt [12,13], this difference has immediate consequences. 

Our strategy in the sequel is to adopt the formalism of Vilkovisky-DeWitt, in which the 
gauge fixing independent effective action is obtained. As is well established, the primary 
object in this analysis is the identification of an acceptable metric on the field configuration 
space. We shall first obtain the most general acceptable metric in this context, and then show 
that an explicit computation of the phase contribution to the one-loop of€-shell effective can 
be performed for a particular family of metrics. The restriction to a particular class of 
metrics is needed in order to allow a complete resolution of the expansion terms in the 
Schwinger expansion. The net result is that one finds the eta function is proportional only 
to a part of the original classical action. However, the important observation is that the 
action of Chern-Simons theory with complex gauge group is the sum of two parts, each of 
which is independently gauge invariant. With our particular choice of field metric, we find 
an eta function proportional to one of these gauge invariant parts. 

R Gibbs and S Mokhtari 

2. Chern-Simons theory with complex gauge group 

In [14], the structure of Chern-Simons quantum field theory for the case of a complex gauge 
group was studied. Let us begin hy presenting the classical action of this model: 

S, = & k /  d3x tr&'(A,agA, 4- $A,ApA, - B,DgB,) 

-k' d'x t r~ug"($BcFgy - fB,BfiB,)  = kSr -k'Sz. (1) s 
Here, A, is the gauge field with curvature Fa@ = &Ap - 38.4, + [A,, Ag], while 
B = B,"T"dx" is a I-form in the adjoint representation of the gauge group, and k and 
k' are two coupling parameters in the model. The covariant derivative is defined by 
DUB) = ~ a a B p  + [A., Bg].  Implicit in o w  formulae is that the trace is taken in the 
fundamental representation. We present our analysis for the theory defined on flat space 
R3, so that the momentum space procedure employed is valid. Conventionally, we take the 
structure constants to be real and completely antisymmetric, with [ T O ,  T b ]  = fabcTc. For 
the fundamental representation of SU(n),  the matrices T' are skew-Hermitian and we take 
trT"Tb = -$Pb,~while for the quadratic Casimir we have f""fbcd = c,Pb. 

We shall be concerned with the partition function in the following form: 

Z = / dA dB exp ($(SI - r&))  (2) 

where we have introduced the ratio of couplings r = k'/k. 
Notice that we have identified two basic parts of the total action, SI and S2; one can 

readily check that they are independently invariant under the gauge transformations to be 
presented. At this point, one can see a resemblance with other topological field theories, 
most notably Chern-Simons gauge theory and BF theory with compact gauge groups. The 
general coupling of these models, and their one-loop structure, pertinent to the present 
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discussion, was investigated in various works [1-7]. However, it should be pointed out that 
the complex nature of the gauge group under study here has the effect of altering certain 
signs in the interaction terms. It transpires that these relative sign changes have a significant 
effect on the relevant metric of the field configuration space, which we treat in the following. 

The local symmetries of (1) are easily established, and are given by 

SA, = D ~ w  - [Be~.el SBu DaB + [B,, 0 1 .  (3) 
We first split the fields into a quantum part plus a background part, as the first step in 

a one-loop background field calculation, as follows 

A + A + A q  B + B + B y .  (4) 

J A ,  = D,@ - [B,, e1 
With this decomposition, the symmetries are: 

SA; = [A:, WI - [B:, el 
SB: = [B:, W ]  + [A:, e ]  SB, = DUB + [B,, W ]  (5) 

where the covariant derivative is with respect to the background field. We now need to 
quantize the theory. To cany out this quantization, one needs to look for a set of gauge 
fixing conditions which are covariant with respect to the symmetries (5). One can check 
that the following set satisfies this condition: 

G+ E DAY - [B,, B'"] = 0 

SGg = [G+.  W I  - [Gz,BI 

= ~ D B q  +[Be,  A*"] = 0 (6) 

(7) 
By implementing these covariant gauge fixing conditions in the quanhm action, and 
considering the part which is quadratic in the quantum fields, one obtains: 

which indeed transform appropriately as follows: 

SC, = LGx, W ]  + [Gg, el. 

= /d3x  t r ( @ ' ~ ( A ~ D ~ A ~  - B,DgB, -2B, [A$,  B;] 

-r(ZB:DoA$ + &[A;, A;] - Bo[B;, B,41)) 

+@(G+ - +a@) + n(G,  - $Y'z)] +ghosts (8) 
where one recalls that the ghost and multiplier fields do not possess classical backgrounds. 
Here, a and U' are two arbitrary gauge fixing parameters. For the purposes of our 
computations, we shall adopt the gauge in which both of these parameters are set to zero, 
this is the gauge in which the Vilkovisky-DeWitt correction terms vanish, as can be checked. 
The result of our calculation in this gauge will therefore represent the unique value of the 
effective action (for the particular chosen field space mebic). 

We are interested in the first-order matrix HZ1 connecting the gauge fields and 
multipliers. It is given by: 

Sf) = a 1 d3x (B:A:@rr)" 

P"8(rD;b + y b B ; )  E'"B(-D;~ + r y b B ; )  RD:b SfncbBe 
@'#(D;b - rfucbB;) cn"p(rD;b + fa"B;)  -Rfy"B; 

0 
0 

x [  RycbB; - R D ; ~  0 
-SDib -SfocbBi 0 

/ B ; \ b  
X I  ' $ 1 .  
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Equation (9) defines a rank-;? symmetric object Hij. which lies between the fields Qi and 
Qj, where we adopt the collective notation Qi ( B F ( x ) ,  A r ( x ) ,  @'(A-), xa(x)).  Also 
notice that the multiplier fields @ and IC have been scaled by R and S respectively. This 
shall offer a convenience at a later stage in our calculation. 

R Cibbs and S Mokhtari 

The theory is defined via the partition function 

the result of which is 

det'/'[Gij] det-'/2[Hijl = det-"'[HI] I '  (11) 

Even when the metric Gij is field independent, its presence in (11) as plays 
a crucial role in ensuring the field reparametrization invariance of the path integral [15]. 
This has also been amply shown in obtaining the correct eta function contribution to various 
topological field theories, [3,6,7]. Therefore, one must address the issue of which field space 
metric is appropriate. We proceed by re-writing the transformations (3) in the condensed 
notation' as follows: 

= KLB" (12) 

where the field @ labels only the classical fields A and B. The symmetry generators are 
denoted by KL, and the infinitesimal gauge parameters are P = (U ,  e). An acceptable 
field metric, Gjj, is defined by the requirement that it admits the gauge generators, Ki, as 
Killing vectors [12,13]. In other words, the following relation between the acceptable Gij 
and Ki must hold: 

o = GikajK; + GjkaiK: + (13) 
for all CY. In this particular case, one can establish that a constant, field independent, metric 
which satisfies (13) does exist. It is shown to be of the form: 

with U' + A' # 0. The point to note here is the difference between the above acceptable 
metric, and that involved in the coupling of Chern-Siions and BF theory in which the 
component is equal to the GBB component [6]. 

We must now obtain a suitable metric on the multiplier space. Based on the geometrical 
arguments, the multiplier metric is obtained by requiring the invariance of G,gh'Ap, where 
A' labels the multiplier fields q5 and x, that is A' = (4, x). Since we already have the 
transformations of the gauge fixing conditions, we need to obtain those of the multiplier 
fields. Under the requirement that @G+ + x C ,  be invariant with respect to (S), we find that 
the multiplier fields transform as: 

84 = [A  01 + [a, el J R  = [x, 01 - t4 ,e i .  (15) 

Given these transformations, we can now determine the multiplier metric by requiring: 

G(G,~AV) = 0. (16) 
The most general solution of (16) is found to be of the form: 
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where U" +A"  # 0. Therefore, under these conditions, the most general solution of the 
full metric on the gauge field-multiplier space, Gi j ,  is given by: 

Assuming that A and A' are non-zero, we can rescale AS and Bq by l,/&> and R and q5 by 
I/&, to find that the inverse metric takes the form: . .  

0 0 1 
r Imb 

with U = up. and U = u'p.'. 
Having dealt with the construction of the most general field metric, we can now proceed 

with the regularization of the path integral. We define the 5 and q functions of the operator 
H = H,! = GikHkj via its eigenvalues An: 

This leads to the result that 
z,, = et~k(o)+(w4)~x(o) 

The q-function has the following integri representation: 

In general, q(s) is difficult to calculate for arbitrary values of s, but its value at s = 0 has a 
more manageable representation. To see this, one decomposes H as HO + Hl, where Ho is 
independent of the background fields, and HI  contains the interaction terms. One can then 
employ a hick due to Gilkey [161, see for example [I], to show that 

The calculation then amounts to an evaluation of those terms which contribute a pole in 
s, so as to cancel the explicit s factor in (23); these can be performed most readily in 
momentum space with the definition 

Here, the prime indicates a trace over any other indices carried by the operator 0. Our 
conventions are such that ( P I X )  = and A(p) = Jdnxe-'PXA(x). 
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3. Computation of the eta function 

Given the structures derived in the previous section, we can now present the details of the 
computation of the eta function. 

(G”Hkj)$(x ,y ) .  As can be seen from 
the integral representation just presented, an important calculational simplicity is achieved 
when the free part of the H operator squares to a diagonal operator. This allows a complete 
resolution of the relevant contributions to the eta function. 

In momentum space, we have the following representation for the free (Ha) part of H: 

R Gibbs and S Mokhtari 

The operator of interest is given by H 

-&PB 0 
We now look for values of U, U, R and S such that H: becomes diagonal. 
investigation, one finds that the following set renders this the case: 

Upon 

R = S R2 = (1 + r’). (27) 
1 I 

r r 
v -- U = -  

The set (27) leads to: 
6@p2 0 

0 P 2  0 
0 0 P 2  

(PlH:lq):{ $‘*&b(P - 4 )  

In addition, one then has the following representation for the interacting, Hl, part of H: 
(2% U# - 1 ocb 

( P I H I I q ) u b  - q f  

where the elements of the matrix M are given by: 

(1, 1 )  = r @ A ;  

(1,2) = r6mYBBE 

(I, 3) = r(1 +rz ) - l f l ( rA;  - B:) 

(1,4) =r( l  + r 2 ) - 1 / 2 ( A : + r B k )  
(3,3) = 0 

(3,4) = 0 
(30) 

(2,l) = -rcuy8B: 

(2,2) = r6eYBAf, 

(2 ,3)  = - r ( l + r 2 ) - 1 / 2 ( A ~ + r B ~ )  ’ (4 ,3)=0 

(4, 1) = -r( l  +r2 ) - ’ f2 (A;  - r B j )  

(4,2) = -r(l + r2)-1’2(rA; + B j )  

(2,4) = r (1  + r2)-1’2(rAc 0 0 1  - B‘) (4,4) = 0 

where A above implicitly denotes A ( p  - 4). 

that the Tro and Tr2 do not contribute to q ~ ( 0 ) .  while the remaining terms give 
We can now proceed with the calculation of the phase of the partition function. We find 
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where we have scaled t by &. Combining these results (and noting that q ~ ( o ) ( O )  = 0) we 
find that the complete expression for q ~ ( 0 )  is 

As we can see, this result is proportional to the SI part of the action (1). Of course, the entire 
construction of the effective action just presented is based upon gauge invariant input, and 
apriori the value of  the eta function derived in such a context should be gauge invariant. 

4. Conclusion 

We have explicitly constructed the phase contribution to the off-shell effective action, at 
one-loop order, for Chern-Simons gauge theory with complex gauge group. The important 
observation in this particular calculation is that the most general acceptable metric on the 
gauge field-multiplier configuration space assumes a form with crucial sign differences from 
that of a coupled theory with compact gauge group. Nevertheless, we succeeded in finding 
a class of metrics which allowed the calculation to be completely resolved. The result of 
the computation is that the phase, for this particular metric class, is proportional to only 
a gauge invariant part of the action. Such a result can be contrasted with Chern-Simons 
theory for a compact gauge group, where of course the eta function is proportional to the 
complete action itself. 
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